finger on my pulse

This year my personal PGP objective (Professional Growth Plan) is “To develop a prototype for documentation of learning for word problems in Middle School that allows each student to develop his or her own process for solving problems.”

So why have I chosen this blog and arena to share this PGP narrative? In participating thus far, in the Documenting for Learning cohort with mentor, Silvia Tolisano and my fellow colleagues, DocuMentors, around documenting for learning, I am learning and on a personal journey to be more transparent in my growth, and to put myself out there more. So in lieu of a closed off submitted document, I wanted to try something new; with trust and vulnerability; open it up to anyone out there… to also see where I was, where I am…and hopefully, where I’m going.

A quote that stuck with me throughout this journey so far:

“if others do it for me, I do it for others”

*long post alert*

Getting out of my comfort zone, to be transparent has been an honest and challenging experience for me. Letting go of my inhibitions of “why would anyone care what I was doing” and “how can what I’m doing even make a difference to others” are thoughts I once had. Through this blog and cohort, I’ve already become a volunteer to change and shift my own mindset into putting myself out there, sharing my ideas, my failures, my challenges, and even just my thoughts. Not for judgement, but for documentation of my journey and my growth.

….so when looking at my PGP, I had to first make a plan. What and where was I going to start? The reason I chose to revolve my growth this year at the school to promote and strengthen problem solving skills in mathematics, is that I was noting that students often gave up too fast when approached with an unknown problem to solve. Whether it be word problems on a page (enter fear here for students; words in math!? I don’t know what to do!) or even working on “sitting with the problem longer” and feeling the struggle and the “squirm to learn,” are skills that aren’t only required for math, but for any problem students and ourselves as educators, and even adults have to learn to navigate.

“knowing what to do, when you don’t know what to do”

I first had the students reflect on their own strengths and understanding of themselves. When you don’t know what to do….Do you a stomp and tantrum in frustration? Are you a guess and give up type? Do you avoid it? Do ask immediately for help? Do you try once and then move on? Once students were more self-aware (me too) of their go-to actions, they were more open to learn and buy into why problem solving strategies are so important. Knowing some “dead guy’s math” is great, and important… but what about new algorithms, new strategies, ones that work for each of them in their own way? The future depends on new ideas, new technologies, new tools, new strategies, and how will we get there, if we can’t and don’t have methods and confidence to keep us trying new things?

I researched many different math problem solving techniques, confidence builders, and tasks. I used references from Marian Small’s, Great Ways to Differentiate Mathematics Instruction, which takes math’s Big Ideas and breaks them down into parallel tasks and individual strengths for students to show their own learning.  Mathematical Mindsets, by Jo Boaler was also a helpful and supportive read, as it provided ideas and suggestions to grow healthy and positive mindsets in math to keep trying and to keep assessment of students growth on-going. Tests should not be the be all and end all of learning. It is just a finger on the pulse. A snapshot of what the student knows at that time. Allowing students the understanding that learning is continuous and shouldn’t end at a test or formal assessment. A few years ago at a provincial math conference, I sat in a session with Dan Meyer, (if I was a “groupie” for anyone, it would be for him) his way of teaching and understanding math for students always leaves me excited to try new ideas and new concepts in my classroom. One thing I always take from him when I go about modelling math problem solving and building students confidence is to try, try again; we tend to put math concepts into video games…but what if…just what if…we approached math like a video game. You get really good at video games by pressing the “play again” button….can’t math always have a “play again” button? Which led me also to learn more about how to coach students to be learners, continuous learners. I did this by reading and using techniques from Diane Sweeny’s books: Student-Centered Coaching, The Guide for K-8 Coaches and Principals, and also the supplementary book, The Moves. Thinking backwards to plan lessons by starting at target goals for each student, which not only personalizes their own learning, but also lends itself to easily to conference with students around what is working for them? Where are their next steps, and what to review to try again to strengthen? The students here become more aware of their own learning and take more ownership for their own growth, and are less concerned (in time) with the results of others. They own more of their own learning. Also finally, in preparation for my PGP journey, I also navigated and read: Show your Work, by Austin Kleon. Knowing that I will be asking students to demonstrate their learning and “show what they know”, this book, easily provided examples and mostly visuals to how students can make a plan of attack (and also how I can structure and make a plan for them) to find meaning and significance to why teachers ask “show all your work.” It fosters and builds on the idea that you don’t need to be a genius, think process not product, and share what you already know and what you are learning, (sound familiar?) it’s not that we want them to do more work, we want them to be able to understand the processes and procedures involved, so that they then, eventually can apply certain ideas and concepts to other related problems and tasks, by trying previous learned strategies that have worked for them in the past.

…and then…my head was full…

…so…trying it out. All the information swirling around in my brain. Trying to make sense of it all, sifting through it like gold in a pan, I fully realized that I can’t do it all. You won’t get all the gold. Keep it Simple. Narrow it down. So I begin with just a few to start. I ran a problem solving workshop with the middle school students and grades four and five. This allowed me to begin the process to naturally see what they do, in small groups, using the building Thinking Classrooms technique. A created a problem-based problem. I created a problem-solving step by step anchor chart, and created and coached groups through the process, modelling as we all went along solving the exact same problem in various different ways, Ways that made sense to those groups. The result. Fantastic. When students are engaged in the learning, they last and stay longer with the problem.

So how do we get from that workshop… to everyday confidence to sit longer with a problem everyday, in all math contexts? What are my next steps to guide, model, coach, foster this?

I introduced Explain Everything. An online tool (app) that worked (at this moment in time) to support this problem solving concept and how student’s can begin to document their growth and their understanding step by step, how they approach a problem, and how to go about solving it. I was honestly and genuinely astonished when some of the first Explain Everything’s started uploading to our shared grade Google Folder. Students were open to share, where they may not be so willing at other times. Through the wonderful work that was being shared, I noted a few things to work on:

  • some students wanted to keep going back to edit, re-edit, and make it “perfect”
  • some students were at first hindered by how to use the tool.
  • some students required more coaching to begin
  • some students started with the “no voice” recording option

So after the first and second Explain Everything’s, (which I also now do after I teach a new skill or concept to check their full understanding) I broke it down even further for some students. I would promote and implement the following:

  • keep your mistakes visible, doesn’t matter how long your video goes on for. Showing your mistakes can help others fix their own mistakes and strengthen their understanding
  • have conferences with students, where I document our conference as an Explain Everything. (i.e. we do it together) Then that student can go back and revisit and re-watch it.
  • Upload voice recordings to me only, and then share which ever version with the class until they are comfortable with listening to their own voice.

Check out a few examples below!

Following these experiences in my own classroom, I had the opportunity to share what I’ve learn and the tool in which I began to use to document students process of problem solving and concepts during a Speed Geeking session during a PD day. I had no idea how much I’d actually already done, until I prepared and shared my examples to my colleagues, and answered questions that not long ago, had no answer to. I learned, they learned, we all learned together.

…now what…

Over the next two weeks, as we head into the Winter Break, my Middle School classes will be participating and learning problem solving in more depth. Jumping out and away from the textbook, we will be focusing solely on unpacking word problems, finding important information, sifting through concepts, and practicing and attempting to solve problems in various ways before quickly asking for help. To teach and model problem solving, you first have to take the answer away. Problem solving isn’t about just finding the product, its all about the process of how, why, and where to go to get there. Using open ended questions and problems that have numerous answers and solutions. My hope over the next two weeks, is when you take the pressure off of “finding the right answer” will provide students more math confidence to try new things, openly make mistakes, and find navigational tools and strategies to begin, keep going, and try, try, try, try, again. The material will be important grade relevant concepts yes, but the problem solving skills, will hopefully still lead them toward “possible correct” solutions. I’m excited to see what the next two weeks bring!

After the Winter Break, I’m looking into perhaps working with the ELT (Educational Learning Team) at the school to find a way to prototype a way for students to document this on their own and take it a step further. This would include me working through the prototype cycle to see where and how this could be beneficial for student growth at the OJCS in mathematics and hopefully in other classes, subjects, and languages as well.

Throughout this entire process so far, I have not been able to get where I have without the support of my colleagues and their willingness to offer guidance, feedback, and lend a critical ear to my thoughts and ideas as I’ve worked through where I am, and where to go next with problem solving in math, and my own personal growth to put myself more out there.

until next time….this is where I am right now on my PGP journey.

…this is just a finger on my pulse…



  1. @Chelsea
    I am blown away by your hyperlinks and the further resources you are offering your readers with this extended writing genre. There are breadcrumbs of your own learning, road signs and amplified reading opportunities. This type of writing & reading gives me goosebumps!
    Love, love, love the student examples, supporting your documentation and moving it from thinking to actually see how it impacts student work and learning…

    As always, I have a special take-away from each of your blog posts. This time, one of the highlight is evidence that documenting is FOR your own learning, beyond sharing with others, but in the end it has to benefit your own learning…


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s